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Erratum
Effects of breathing and oblong mode phonons on
transport properties in a single-electron transistor
Norihiko Nishiguchi and Martin N Wybourne
2010 J. Phys.: Condens. Matter 22 065301

It has come to the attention of the authors that an error occurred
in figure 3 of the above paper. An additional line appears below
the T = 4 line which should not be there. The corrected figure
is as follows:
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Figure 3. The temperature T ′ in the nanoparticle versus V at T = 4
K for γ∞ = 0.01γ , 0.1γ and 0.5γ . The data lines of γ∞ = 0.1γ and
0.5γ are denoted by arrows. T is the temperature of the heat bath.
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Abstract
We investigate theoretically the transport characteristics of a single-electron transistor affected
by the dynamic deformation of the device configuration due to phonons. By considering
changes in capacitances and tunnel resistances caused by the breathing and oblong vibrations of
the island that forms part of the transistor, we formulate the electron–phonon interaction
peculiar to the device and derive its transport properties by means of the master equation. For a
single electron transistor with a gold nanoparticle island of radius 1 nm, we demonstrate the
contribution to the transport properties that originates from tunneling channels associated with
THz phonon emission and absorption.

1. Introduction

It is well known that electron–phonon interactions affect the
electronic states in a solid, which leads to a rich variety
of transport phenomena. It is also well established that
the transport properties of nanoscale electronic devices can
depend on the geometry of the system. A useful tool
for investigating the geometry and the electronic structure
in molecular junctions is inelastic electron tunneling that
occurs as a consequence of electron–phonon interactions in the
junction [1, 2].

In molecular devices, electron tunneling couples with
vibrations of molecules in two ways [3]; electron tunneling
induces internal vibrations owing to rearrangement of the
atomic configuration, and the charged molecules are driven in
the bias electric field. The coupling between the vibrations and
tunneling cause phonon-mediated electron transport channels,
giving rise to characteristic I –V curves owing to multi-phonon
emission and absorption [4–8].

The effect of phonons on the electron transport properties
of a metal-based single-electron transistor (SET) is more
limited since the nanoparticle is too stiff to allow the atomic
configuration changes in accordance with tunneling like the
molecular devices, and then phonons do not couple with
electron tunneling. For such devices operated in the Coulomb
blockade regime, the electron–phonon interaction causes

electron energy fluctuations that, based on the bulk electron–
phonon interaction, are independent of the system size. Hence,
except for the translational vibrations of molecules, electron
transport characteristics that reflect multi-phonon emission and
absorption are not expected in the device.

In spite of that, we anticipate phonon-mediated transport
properties similar to the molecular devices due to a different
type of electron–phonon interaction. The nanoparticle
island is positioned in the vicinity of the electrodes, where
the gaps between the island and electrodes set the key
electronic parameters for the SET; the capacitances and tunnel
resistances. Surface displacement of the particle island due to
phonons modifies the gaps, which is expected to remarkably
affect the current through the SET.

In this paper we investigate the effects of gap modulation
on the electron transport in the SET. To understand the
character and magnitude of possible phonon effects, we
consider an ideal SET containing a metal nanoparticle between
the source and drain (figure 1). Such a system might be realized
by attaching the particle to the electrodes with biomolecules
such as RNA or DNA [9]. The metal island is assumed to be
a sphere that supports a variety of acoustic phonon modes (see
appendix A). The particle has an almost stress-free surface and
will have relatively large amplitude surface vibrations due to
phonons. In particular, only the breathing modes of spherical
symmetry change the intrinsic capacitance of the island and
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Figure 1. Model of a SET. The nanometal particle is linked
electrically to the source and drain made of conducting planes. CL(R)

and RL(R) are the capacitance and tunnel resistance between the
particle and the left (right) electrode, respectively. a and c are the
radii of the metal particle and the distance between the particle and
the leads. The oval below the particle indicates a heat bath.

the oblong modes modify tunnel resistances significantly more
than other modes, as discussed below. Considering these, we
investigate the contributions of breathing and oblong mode
phonons to the transport, respectively, as the representative
cases.

Thanks to the nature of the attachment, the particle might
move in a shuttle fashion between the electrodes [10–20]. This
translational shuttle motion also changes the capacitances and
tunnel resistances. In order to differentiate these effects from
those of surface vibrations, we will assume the particle to be
firmly fixed centrally between the electrodes. We also note that
the system considered here is different to that of an SET used
in a nanoelectromechanical system as a means to transduce the
subtle motion of a nanoresonator [21–25]. In that situation
the SET itself is taken to have rigid components and the
transduction generally occurs via modulation of the coupling
capacitance between the resonator and the SET island [22].

This paper is planned as follows; in section 2, we describe
the system to be studied in this work and introduce the
Hamiltonian of the system. The phonon-mediated tunneling
is formulated in this section. In section 3, dealing with
the phonon-mediated tunneling as a perturbation, the non-
perturbed part of the Hamiltonian is diagonalized by means of
a canonical transform. In section 4, the density matrix and
associated master equations are introduced. In section 5, we
give numerical results for the thermal and transport properties.
Finally, section 6 provides a discussion and summary of the
work. Derivation of acoustic phonon modes in the particle is
given in the appendices.

2. Model

We consider an SET containing a gold spherical particle a
in radius, which is suspended centrally between the source
and drain made of conducting planes (figure 1). The electron
transport is due to single-electron tunneling between the metal

particle and the electrodes in the Coulomb blockade regime.
The metal particle is connected to a heat bath, whose coupling
strength is γ∞. Although the heat bath is depicted separately
from the electrodes in figure 1, the electrodes may act as the
heat bath.

The Hamiltonian H of the SET is given by

H = HL + HR + HD + HT + Hph + Hb + Hph-b, (1)

where HL, HR and HD are the Hamiltonians of electrons in the
source, the drain and the particle, respectively, and HT is the
tunnel Hamiltonian:

HL =
∑

k

(εL,k + eV )c†
L,kcL,k (2)

HR =
∑

k

εR,kc†
R,kcR,k (3)

HD =
∑

k

(
εD,k + eV

2

)
c†

D,kcD,k

+ e2

2C(r)

(
∑

k

c†
D,kcD,k

)2

(4)

HT = exp

(
r − a

λ

) ∑

k,k′

[
t0
Lc†

L,kcD,k′

+ t0∗
L c†

D,k′ cL,k + t0
Rc†

R,kcD,k′ + t0∗
R c†

D,k′ cR,k
]
. (5)

In equations (2)–(5), c†
α,k and cα,k are the creation and

annihilation operators, and εα,k is the energy of an electron of
k-state. The subscript α means the source for α = L, the drain
for α = R and the particle for α = D. V is the bias voltage and
e(>0) is the elementary charge. t0

α in HT (equation (5)) is the
coefficient of tunneling and the factor exp( r−a

λ
) is introduced

to express the modulation of tunnel resistance, considering that
both the breathing and oblong modes expand or shrink the left
and right gaps between the island and leads simultaneously.
Here r is the radius of the particle, including the surface
displacement ur due to phonons:

r = a + ur , (6)

and λ is a characteristic length of tunneling.
For the breathing mode phonons, r is independent of

solid angles and then the nanoparticle remains a sphere
after deformation. We estimate the capacitance between a
metal sphere and a conducting plane, using the method of
images [26], as

Csphere(r) = 4πε∗ε0r

(
1 + α + α2

1 − α2
+ · · ·

)
, (7)

where α = r
2c . Here c is the distance between the center of the

particle and the conducting plane, and then α < 1
2 . The total

capacitance C(r) in equation (4) of the SET is composed of
CL and CR, each of which is given by equation (7). Since the
particle is positioned at the midpoint between the source and
drain, CL = CR and then the total capacitance becomes twice
equation (7), i.e. C(r) = 2Csphere(r). For a small displacement
in comparison with radius, i.e. |ur | � a, C(r) is approximated
as

1

C(r)
≈

(
1 − β

ur

a

) 1

C0
, (8)
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where C0 = C(a) and the factor β is defined by

β = 1 + a

2c
. (9)

It is known that the intrinsic capacitance of a substance
with finite volume is a minimum for a sphere [27]. Then
the change in the intrinsic capacitance for the oblong modes
depends on u2

r and the change in the capacitance is mainly due
to the change in the gaps between the island and electrodes.
Considering only the change in α in equation (7), we obtain

β = a

2c
, (10)

where we suppose that the sphere is stretched toward the
electrodes and regard ur as the surface displacement in the
direction. The magnitude of equation (10) is not only for
the oblong modes but also common to all the spheroidal
modes except for the breathing mode. Using equation (7),
the charging energy associated with phonons is separated from
others in HD as

HD ≈
∑

k

(
εD,k + eV

2

)
c†

D,kcD,k + e2

2C0

(
∑

k

c†
D,kcD,k

)2

− β
ur

a

e2

2C0

(
∑

k

c†
D,kcD,k

)2

. (11)

β stands for a coupling constant between phonons and
electrons, and then the breathing mode phonons are expected
to play a dominant role in electron transport in comparison
with other modes. On the other hand, the oblong mode has
the largest amplitude as compared with other modes, as shown
in appendix A, which is also expected to affect predominantly
transport properties via the modulation of tunnel resistances.
Hence we are devoted to the breathing and oblong vibration
modes, hereafter.

Using an isotropic elastic continuum model, we derive
the breathing mode (B) and its vibrational spectra in the gold
spherical particle with free surface in appendix A. The lowest
angular frequency ωB becomes ωB = 9.52 × 103/a rad s−1,
and higher frequencies are approximately harmonics of ωB,
i.e. ωn ≈ nωB (n = 2, 3, . . .). The displacement at the
particle surface becomes largest for ωB and decreases for
ωn with increasing n. For a = 1 nm, the fundamental
frequency becomes ωB/2π = 1.52 THz and higher phonon
frequencies become comparable to or larger than the Debye
frequency (3.44 THz). In the frequency region, the elastic
continuum model is not suitable to describe vibrations in the
solid, and then the phonon frequencies obtained are unreliable
except for the fundamental one. The fundamental frequency
of the oblong mode (O) is ωO = 3.24 × 103/a rad s−1

and the higher modes are approximately harmonics of ωO.
The amplitude of the fundamental frequency is largest among
others, and then we expect that the oblong mode phonons at
the fundamental frequency affect noticeably the transport in the
SET. Considering these, we take account of only the breathing
mode phonons at ωB and the oblong mode phonons at ωO in
this work.

The surface displacement ur toward the electrodes is
expressed in a quantized form by

ur = κK a(bK + b†
K ), (12)

in terms of the annihilation bK and creation operators b†
K of a

breathing (K = B) and oblong mode phonons (K = O). In
equation (12), κK is the ratio of the surface displacement to a,
which is evaluated as (equation (A.25))

κB = 2.33 × 10−22 1

a2
(13)

for the breathing mode at ωB and

κO = 29.87 × 10−22 1

a2
(14)

for the oblong mode at ωO. Substituting equation (12) into
equation (11), we have HD.

The Hamiltonian Hph of phonons in the island is

Hph =
∑

J

h̄ωJ
(
b†

J bJ + 1
2

)
, (15)

where J stands for a set of quantum numbers given in
equation (A.17). The heat bath Hb is modeled by a phonon
bath and we assume linear coupling between the phonons in
the island and those in the heat bath for Hph-b.

We do not take into account the bulk electron–phonon
interaction in the island and anharmonic interaction among
phonons since they do not contribute to electron tunneling.
However, they work for thermal equilibration in the island,
whose effects are incorporated below.

3. Canonical transformation

We sort the Hamiltonians into those of the system HS,
environment HE and interaction Hint:

HS = HD + Hph (16)

HE = HL + HR + Hb (17)

Hint = HT + Hph-b. (18)

Dealing with Hint as a perturbation, we diagonalize HS+HE by
a canonical transform and modify Hint by the same canonical
transformation. In the rest of this work, we investigate
individually the phonon effects of the breathing and oblong
mode phonons, and then bK and b†

K appearing in equation (11)
are the operators for either mode of them.

We separate the off-diagonal part H1 containing ur in
equation (11) from HS as

HS = H0 + ηH1, (19)

where

H0 =
∑

J

h̄ωJ
(
b†

J bJ + 1
2

)

+
∑

k

(
εD,k + eV

2

)
c†

D,kcD,k + EC

(
∑

k

c†
D,kcD,k

)2

(20)

H1 = −(bK + b†
K )EC

(
∑

k

c†
D,kcD,k

)2

(21)

η = βκK . (22)
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Here EC is

EC = e2

2C0
. (23)

Suitably choosing an operator S as

S = EC

h̄ωK
(bK − b†

K )

(
∑

k

c†
D,kcD,k

)2

, (24)

we diagonalize HS as follows:

H̃S = eηS HSe−ηS

=
∑

J

h̄ωJ

(
b†

J bJ + 1

2

)
+

∑

k

(
εD,k + eV

2

)
c†

D,kcD,k

+ EC

(
∑

k

c†
D,kcD,k

)2

− η2 E2
C

h̄ωK

(
∑

k

c†
D,kcD,k

)4

. (25)

The eigenstate is given by |�̃S〉 = |{nD,k}, {m K }〉 and the
eigenenergy becomes

ES =
∑

J

h̄ωJ
(
m J + 1

2

)

+
∑

k

(
εD,k + eV

2

)
nD,k + ES(n), (26)

where nD,k is the occupation number of the k-state in the island
and m J is the number of phonons of mode J . n is the total
number of extra electrons on the island with respect to the
electrically neutral state. The charging energy ES(n) is given
by

ES(n) = EC n2 − η2 E2
C

h̄ωK
n4, (27)

where the second term on the right-hand side of equation (27)
is due to virtual phonons.

In contrast to HS, S commutes HE:

[S, HE] = 0, (28)

and then HE is unchanged for the canonical transform. Then
the eigenstate of the H̃S + H̃E becomes

|�̃〉 = |{nD,k}, {m J }〉 ⊗ |{nL,k}, {nR,k}, {mμ}〉. (29)

nL,k , nR,k and mμ are the occupation numbers of electrons in
the source and drain, and the number of phonons of mode μ in
the heat bath.

The tunnel Hamiltonian HT is converted in the same way
as HS and becomes

H̃T =
∑

k,k′
[t0

Lc†
L,kcD,k′ B + t0∗

L B†c†
D,k′ cL,k

+ t0
Rc†

R,kcD,k′ B + t0∗
R B†c†

D,k′ cR,k], (30)

where

B = eκK ( a
λ
+β

EC
h̄ωK

)b†
K +κK ( a

λ
−β

EC
h̄ωK

)bK . (31)

4. Master equation

In order to formulate transport properties such as current and
its noise, we introduce a reduced density matrix defined by
ρmm

nn (t) = Tr[ρ(t)]n,m, where m(=m K ) is the number of
breathing/oblong mode phonons in the island. Considering the
case that only the two states with n = 0 and 1 are involved
in transport, we derive equations of motion of ρmm

nn for each n.
Using a von Neumann equation, the master equation yields

ρ̇mm
00 =

∑

m′
�(0, m | 0, m ′)ρm′m′

00 +
∑

m′
�(0, m | 1, m ′)ρm′m′

11

(32)

ρ̇mm
11 =

∑

m′
�(1, m | 0, m ′)ρm′m′

00 +
∑

m′
�(1, m | 1, m ′)ρm′m′

11 .

(33)

The matrix elements are

�(0, m|1, m ′) =
∑

α=L,R

γα|
〈
m |B| m ′〉 |2

(
C0

e2

)

× F(−�μα + EC + �μD + (m ′ − m)h̄ωK ) (34)

�(1, m|0, m ′) =
∑

α=L,R

γα|
〈
m ′ |B| m

〉 |2
(

C0

e2

)

× F(�μα − EC − �μD − (m − m ′)h̄ωK ) (35)

�(0, m|0, m ′) = −δm,m′
∑

m′′
�(1, m ′′ | 0, m)

− 2γ∞N(ωK )[(m + 1)δm,m′ − mδm−1,m′ ]
− 2γ∞[N(ωK ) + 1][mδm,m′ − (m + 1)δm+1,m′ ] (36)

�(1, m|1, m ′) = −δm,m′
∑

m′′
�(0, m ′′ | 1, m)

− 2γ∞N(ωK )[(m + 1)δm,m′ − mδm−1,m′ ]
− 2γ∞[N(ωK ) + 1][mδm,m′ − (m + 1)δm+1,m′ ] (37)

where
γα = (RαC0)

−1 , (38)

and F(x) is

F(x) = x

1 − e−x/kB T
. (39)

Here we put
ES(1) ≈ EC , (40)

The changes in the chemical potentials are related to the bias
voltage as follows:

�μL = eV (41)

�μR = 0 (42)

�μD = 1
2 eV. (43)

The Franck–Condon factor can be computed as

| 〈m |B| m ′〉 |2 = |〈m|ez1b†−z2b|m ′〉|2

= e−z1z2 z2|m−m′ | p!
q!

[
L |m−m′ |

p (z1z2)
]2

, (44)

where
z = z1 �(m − m ′) − z2 �(m ′ − m) (45)

and

z1 = κK

(
β

EC

h̄ωK
+ a

λ

)

4
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z2 = κK

(
β

EC

h̄ωK
− a

λ

)
.

p = min(m, m ′) and q = max(m, m ′), and L |m−m′ |
p is the

associated Laguerre polynomial. The diagonal elements of
equation (44) decay from unity as the product z1z2 increases
from 0. On the other hand, the off-diagonal ones related to
tunneling associated with multi-phonon emission or absorption
increase.

Equations (32) and (33) comprise the terms of electron
tunneling with or without phonon mediation and the phonon
exchange terms with the heat bath in the Lindblad form [28]
as seen in equations (36) and (37), where N(ωK ) is the Bose–
Einstein distribution function of phonons in the heat bath at the
same frequency as the breathing or oblong mode phonons.

It is convenient to introduce σ mm
nn for evaluation of noise

properties in the SET [29], which are subject to the following
equation of motion:

σ̇ mm
00 =

∑

m′
�(0, m|0, m ′)σ m′m′

00 +
∑

m′
�(0, m|1, m ′)σ m′m′

11

+
∑

m′
�(0, m|1, m ′)ρm′m′

11 (46)

σ̇ mm
11 =

∑

m′
�(1, m|0, m ′)σ m′m′

00 +
∑

m′
�(1, m|1, m ′)σ m′m′

11 ,

(47)

with the initial condition σ mm
nn (t = 0) = 0 for n = 0, 1 and

m � 0.
We formulate the total charge transferred to the drain

within time interval t , using σ mm
nn , as

〈Q(t)〉 = −e
∑

n,m

σ mm
nn , (48)

and then the current I yields

I = − lim
t→∞

〈Q(t)〉
t

. (49)

The noise power spectrum S(0) at zero frequency is related to
the variance of Q as

S(0) = lim
t→∞

2

t
�Q2(t), (50)

and the time derivative of the variance is given in terms of ρmm
nn

and σ mm
nn by

d

dt
�Q2 = 2e2

∑

m,m′
�(0, m|1, m ′)σ m′m′

11 − e〈Q̇〉 − 2〈Q〉〈Q̇〉,
(51)

where
〈Q̇〉 = −e

∑

m,m′
�(0, m|1, m ′)ρm′m′

11 . (52)

The Fano factor is defined by

F = S(0)

2eI
, (53)

using S(0) obtained from equation (51).

Table 1. Parameters used in the numerical evaluation for a = 1 nm.

Breathing mode Oblong mode

ω/2π 1.516 THz 0.515 THz
κK 2.426 × 10−4 29.876 × 10−4

β 1 + a
2c = 1.5 a

2c = 0.5
z1 1.62 × 10−2 1.97 × 10−1

z2 6.517 × 10−3 7.750 × 10−2

5. Numerical results

5.1. Temperature in the particle

Phonon emission and absorption induced by electron tunneling
are expected to heat up or to cool down the island. The
temperature in the island is determined from the distribution
of phonon occupation numbers. Then we first examine the
distribution of phonon occupation numbers and obtain the
island temperature. Considering the particle is put at the
midpoint between the electrodes, we put both the characteristic
tunneling rates γL and γR to be γ , and assume ωK � γ .
At the steady state, i.e. ρ̇mm

nn = 0, thermal properties depend
on the ratio γ∞

γ
. Then we numerically investigate thermal

and transport properties, putting γ∞ = 0.01γ in this work
for convenience. We solve equations (32) and (33) self-
consistently by means of the Runge–Kutta method of fourth
order, where we substitute the temperature T in equation (39)
by the temperature in the island calculated from the averaged
number of phonons discussed below in order to incorporate
thermal equilibration among phonons and electrons. Here the
bias voltage V is expressed in units of e/C0, and V C0/e = 1
which is equivalent to 1

2 eV = EC is the threshold bias voltage
for tunneling without phonon mediation. The parameters used
are given in table 1.

We examined ρmm
nn versus m at T = 4 K for various

bias voltages from V C0/e = 0.97 to 1.20 and find ρmm
11 ∝

ρmm
00 . Figure 2 plots the total phonon occupation probability

ρmm (=ρmm
00 + ρmm

11 ) versus m. ρmm for V C0/e � 0.97
or V C0/e � 1.20 decreases exponentially with increasing
m, indicating that ρmm becomes a distribution of a thermal
equilibrium state, i.e. the canonical distribution ρmm =
e−mh̄ωK /kB T ′

(1 − e−h̄ωK /kB T ′
), although the temperature T ′ in

the island is different from that of the environment when
phonon-mediated tunneling occurs. Using the Bose–Einstein
distribution function, we estimate the temperature T ′ from the
averaged number of phonons 〈mO〉[=Tr(mρmm

nn )]K=O in the
island as

T ′ = h̄ωO

kB

1

ln
(

1
〈mO〉 + 1

) . (54)

T ′ for V C0/e � 0.97 agrees with the heat bath temperature,
i.e. 4 K, and T ′ for V C0/e � 1.2 becomes larger than 4 K,
which will be shown below.

The phonon occupation probability does not always
become the canonical distribution, however. Figure 2 shows
a concave variation of ρmm in the semi-log scale with respect
to m for 0.97 < V C0/e < 1.2, manifesting deviation from the
canonical distribution. Such a deviation of phonon distribution
probability from the canonical distribution is also known
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Figure 2. ρmm versus m at bias voltages from V C0/e = 0.97 to 1.2
for oblong mode phonons. The lines with solid circles indicate ρmm

at each magnitude of V C0/e. The temperature of the heat bath is set
as T = 4 K and the thermal dissipation coefficient as γ∞ = 0.01γ .
ρmm for V C0/e = 0.97 and 1.2 agree with the canonical distribution,
while the distribution deviates from the canonical one between the
bias voltages. The dashed lines denote the canonical distribution
derived from the phonon number for V C0/e = 1.00 and 1.05.

to take place in a molecular transistor [3], where electron
tunneling mediated by multi-phonon absorption/emission
occurs. Indeed, when the multi-phonon absorption/emission
processes are artificially suppressed in the present work,
the phonon occupation probability becomes the canonical
distribution.

The effects of multi-phonon processes on ρmm do not
appear at V C0/e � 0.97, as mentioned above. In the
low bias voltage region, tunneling does not take place and
then the phonon distribution is governed by thermal energy
exchange between the island and the heat bath, with the
distribution becoming the canonical distribution at the heat
bath temperature. In the bias voltage region 0.97 < V C0/e <

1.2, not only the phonon-absorbed tunneling but also the
tunneling associated with phonon emission are possible, even
when the bias is below the threshold voltage for phonon
emission because of thermal fluctuations in electron energy.
These processes affect the distribution of phonon occupation
probability; according to the Monte Carlo simulations based on
the master equations (32) and (33), for example, at V C0/e =
0.99, tunneling associated with single-phonon emission occurs
most frequently when an electron leaves the island, aside
from tunneling without phonon mediation. Single-phonon
absorption when an electron tunnels onto the island, and two-
phonon emission when an electron tunnels off the island,
occur at a comparable rate, which is an order of magnitude
smaller than the single-phonon emission. Thus the tunneling
associated with multi-phonon emission makes the probability
of multi-phonon states larger, so that the distribution deviates
from the canonical distribution. Phonon-absorbed tunneling
might be expected to lead to thermal cooling of the island in the
bias region, but the tunneling associated with single-phonon
absorption is overcome by the tunneling with two-phonon

Figure 3. The temperature T ′ in the nanoparticle versus V at
T = 4 K for γ∞ = 0.01γ , 0.1γ and 0.5γ . The data lines of
γ∞ = 0.1γ and 0.5γ are denoted by arrows. T is the temperature of
the heat bath.

emission, as mentioned above. As a consequence, the island
gains rather than loses energy. Even if the cooling takes place,
the coupling to the thermal bath makes the effect small. At a
larger bias voltage, V C0/e > 1.2, the number of phonons in
the island increases and then the exchange of phonons between
the island and the heat bath dominates thermal equilibration.
As a consequence, the phonon occupation probability becomes
a canonical distribution at temperatures larger than that of
the heat bath. From these discussions, it is concluded that
the canonical distribution appears when the thermal coupling
between the island and the heat bath dominates thermal
equilibration. At high heat bath temperature, N(ωK ) in the
heat bath becomes large, enhancing thermal coupling between
the island and the heat bath. The canonical distribution
of ρmm appears at. for example, 40 K, even in the bias
region 0.97 < V C0/e < 1.2. The same effects appear for
large thermal coupling γ∞, since it increases phonon energy
exchange between the island and the heat bath.

Because of the phonon occupation probability distinct
from the canonical distribution, we define the temperature T ′
in the island by means of entropy S given by

S = −kB

∑

m

ρmm log ρmm . (55)

Numerically differentiating S and 〈m K 〉 with respect to {ρmm}
provided that

∑
m δρmm = 0 and using the following

thermodynamic definition of temperature:

1

T ′ = 1

h̄ωK

dS

d〈m K 〉 , (56)

T ′ is obtained. The resultant T ′ agrees well with the
temperature given by equation (54). The dashed lines in
figure 2 denote e−h̄ωO/kB T ′

for V C/e = 1.00 and 1.05, which
agree with ρmm

00 for m � 1 and 2, respectively.
In figure 3, we plot T ′ versus V at T = 4 and 40 K for

each case of the breathing and oblong mode phonons, with
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γ∞ = 0.01γ , 0.1γ and 0.5γ . The rate at which T ′ increases
with bias depends on how fast the phonon energy dissipates to
the heat bath and becomes small for large γ∞/γ .

The onset of the temperature increase depends on the
phonon modes. The temperature rise begins at a lower
bias voltage for the breathing mode than that for the oblong
mode because the threshold voltage associated with phonon
absorption is lower for the breathing mode; ωB > ωO. Even
below the threshold bias for tunneling associated with phonon
emission, the island gains phonon energy by phonon emission,
as mentioned above. As a consequence, the temperature for
the breathing mode rises more steeply at lower bias voltage.
Conversely, the increasing rate is larger for the oblong mode
than that for the breathing mode, which is seen clearly at the
heat bath temperature of T = 40 K.

5.2. Current, differential conductance and noise

We plot the total current I and the current Iph only due to
phonon-mediated electron tunneling versus V at T = 4 K in
figure 4. Figure 4(a) shows the results for the breathing mode.
The total current I begins to flow at V C0/e = 1 and increases
almost linearly with increasing V . On the other hand, Iph arises
at V C0/e = 1 + h̄ωB

EC
≈ 1.03, which is the threshold bias

voltage for tunneling associated with single-phonon emission.
Because Iph amounts, at most, to 0.004% of the total current,
the signature of phonon effects on I is obscured. Figure 4(b)
plots I and Iph due to the oblong mode. Iph begins to arise
at V C0/e = 1 + h̄ωO

EC
≈ 1.01 and increases nonlinearly with

respect to V . Although Iph is three orders of magnitude larger
than that for the breathing mode, it is not yet large enough to
cause apparent modifications on the total current I .

In order to resolve the subtle phonon effects on the current,
we look at the differential conductance σ of the total current,
the Fano factor F and σph only due to phonon-mediated
tunneling,. We expect steps in σ due to additional conductance
channels arising from phonon emission. As for the Fano
factor, a drastic increase in F is anticipated when the phonon-
mediated tunneling begins to occur in addition to the tunneling
without phonon mediation. Figure 5 plots σ , σph and F at 4 K
for (a) the breathing and (b) the oblong modes, which show
no notable changes in σ and F , contrary to the expectation for
both cases.

There is a prominent difference in the bias voltage
dependence of σph between the two cases; σph for the
breathing mode decays gradually with increasing bias after the
abrupt increase in magnitude, similarly to σ . The similarity
indicates that Iph is predominantly owing to a single channel,
i.e. tunneling associated with single-phonon emission. In
contrast, σph for the oblong mode phonons continues to
increase with increasing the bias, reflecting the nonlinear
increase in Iph with respect to the bias. Considering that the
multi-phonon-mediated tunneling makes the phonon number
probability of the oblong mode deviate from the canonical
distribution more than that of the breathing mode and that Iph

for the oblong mode is three orders of magnitude larger than
that for the breathing mode, we speculate that Iph for the oblong
mode results from superposition of currents owing to multi-
phonon-mediated tunneling while Iph for the breathing mode

Figure 4. The total current I and phonon-mediated current Iph for
(a) the breathing and (b) oblong modes versus V at T = 4 K.

phonons is due to tunneling associated with single-phonon
emission. If so, characteristic steps in σph are expected in
figure 5(b), although σph varies smoothly with increasing V .

To illustrate the contribution of multi-phonon-mediated
tunneling to the transport, we investigate the second derivative
of current with respect to V . Figure 6(a) shows d2 I

dV 2 and
d2 Iph

dV 2 versus V for the breathing mode at various heat bath

temperatures from 4 to 40 K. d2 I
dV 2 has a main peak at V C0/e =

1, which lowers and broadens with increasing temperature.

On the other hand, at T = 4 K, d2 Iph

dV 2 shows sidebands at
V C0/e = 1 ± 0.03 due to single-phonon absorption (−) and
emission (+). These two peaks are too small to be resolved in
d2 I
dV 2 . As the temperature increases, the peak due to the phonon
absorption becomes larger and broadens, while the peak due
to phonon emission flattens. The peaks eventually merge at
T � 20 K and the effects of phonon absorption and emission
become indistinguishable above 20 K.

Figure 6(b) plots d2 I
dV 2 and d2 Iph

dV 2 versus V for the oblong

mode, and there are sidebands in d2 Iph

dV 2 indicating single-phonon
absorption and emission at V C0/e = 1 ± 0.01. Because the
two sidebands are close in energy, the peak corresponding to
phonon absorption is only just resolved at low temperature.
The two peaks merge with increasing temperature and become
indistinguishable at T = 20 K. Although we expected other
sidebands associated with multi-phonon absorption/emission
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Figure 5. The differential conductance σ of the total current I and
σph of phonon-mediated current Iph together with the Fano factor F
for (a) the breathing and (b) oblong modes versus V at T = 4 K. RT

is the tunnel resistance between the particle island and leads.

at, for example, V C0/e = 1.00 ± 0.02, no evidence of extra

peaks was found in d2 Iph

dV 2 , indicating that the nonlinear increase
in Iph for the oblong mode is not primarily the result of multi-
phonon-mediated tunneling.

To investigate this situation, we consider the current in the
steady state that may be described as

I = e
∑

m

[�(1, m|0, m) + �(1, m + 1 | 0, m)

+ �(1, m − 1 | 0, m)]ρmm
00 , (57)

which is derived from the master equations (32) and (33)
provided that 〈ṅ〉 = 0. The relevant phonon-mediated
component Iph is

Iph = e
∑

m

[�(1, m + 1|0, m) + �(1, m − 1|0, m)] ρmm
00 .

(58)
The matrix elements for single-phonon-mediated tunneling can
be approximated as

�(1, m + 1|0, m) ≈ (m + 1)�(1, 1 | 0, 0) (59)

�(1, m − 1|0, m) ≈ m�(1, 0 | 0, 1), (60)

since p!
q! [L1

p(z)]2 ≈ p!
q! (p + 1)2 for small z in equation (44).

Expressing ρmm
nn by the product of the electronic part ρnn and

Figure 6. The second differential conductance of the total current
d2 I
dV 2 and that of the phonon-mediated current

d2 Iph

dV 2 versus V at 4 K for
(a) the breathing mode and (b) oblong mode.

the canonical distribution:

ρmm
nn = ρnn

e−mh̄ωK /kB T ′

Z
, (61)

where

Z = 1

1 − e−h̄ωK /kB T ′ , (62)

Iph yields

Iph ≈ e
∑

m

[(m + 1)�(1, 1|0, 0) + m�(1, 0|0, 1)] ρmm
00

= e�(1, 1|0, 0)ρ00 + e〈m K 〉[�(1, 1|0, 0)

+ �(1, 0|0, 1)]ρ00. (63)

The �s increase linearly with respect to the bias, and the
number of phonons 〈m K 〉 also increases with increasing bias
because of phonon emission. As a consequence, if ρ00 is
almost constant the second term of equation (63) increases
nonlinearly with increasing bias, resulting in the nonlinear
increase in Iph.

The magnitude in 〈m K 〉 depends on both the electron–
phonon coupling and the thermal resistance between the island
and heat bath. Hence, the nonlinear behavior depends on
how rapidly 〈m K 〉 grows with bias. The difference in the
bias dependence of Iph between the breathing and oblong
modes can be estimated by considering the situation where the
first term in equation (63) is equal to the size of the second
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Figure 7. The second differential conductance of the total current
d2 I
dV 2 and that of the phonon-mediated current

d2 Iph

dV 2 versus V at 4 K for
the oblong mode. The dotted and solid lines indicate the results for
γ∞ = 0.01γ and 0.5γ , respectively.

term because of the increase in 〈m K 〉. In this case, from
equation (63) 〈m K 〉 becomes equal to the ratio

〈m K 〉 = �(1, 1|0, 0)

�(1, 1|0, 0) + �(1, 0|0, 1)
. (64)

The right-hand side of equation (64) becomes 0 at the threshold
bias voltage for single-phonon emission and saturates to be
0.13 for the oblong mode and 0.11 for the breathing mode at
very large bias (see appendix B). Because saturation happens
quickly, the ratio becomes ≈0.1 even at Co V

e = 1.1 where the
nonlinear behavior of Iph is confirmed for the oblong mode
in figure 4(b). Supposing 〈m K 〉 = 0.1, the temperature TK

of the island for the breathing and oblong modes is estimated
from equation (54) to be TB = 30.4 K and TO = 10.3 K,
respectively.

As shown in figure 3, the temperature of the island for the
oblong mode becomes larger than 10 K at V C0/e > 1.1. In
contrast, the temperature for the breathing mode does not reach
30 K in the bias region studied. This argument shows that, as
a result of the bias dependence of 〈m K 〉, Iph for the oblong
mode increases nonlinearly, while that for the breathing mode
increases linearly over the parameter range considered. The
difference in Iph between the oblong and breathing modes also
leads to the difference in the magnitude and bias dependence

of d2 Iph

dV 2 at V C0/e > 1.04, as seen in figures 6(a) and (b).

From the discussion, we can assess the behavior of d2 Iph

dV 2 at
V C0/e > 1.04 for the oblong mode at large γ∞. The large γ∞
reduces 〈mO〉, which is expected to lead to a linear increase in

Iph, like the breathing mode. Figure 7 compares d2 Iph

dV 2 for the

oblong mode versus V between γ∞ = 0.01γ and 0.5γ . d2 Iph

dV 2

for γ∞ = 0.5γ becomes negative at V C0/e = 1.026, similar
to that of the breathing mode, confirming that the nonlinear
increase in Iph is a thermal effect.

6. Summary and conclusion

We have discussed how phonons associated with the island
of an SET influence the electron transport of the device. We
have formulated the tunnel Hamiltonian to incorporate the
changes in the capacitances and tunnel resistances caused by
phonons. Based on this result, we set up the master equations
for the density matrix and formulate the current, differential
conductance and the Fano factor.

Applying the model to an ideal SET containing a spherical
gold particle 1 nm in radius, we calculated the effects of the
breathing and oblong mode phonons on the thermal properties
of the island and on the electron transport. Phonon emission
associated with tunneling raises the temperature in the island
and multi-phonon emission makes the phonon occupation
number in the island deviate from the canonical distribution
even at steady state in the bias region close to the tunneling
threshold. The current through the SET is dominated by
tunneling without phonon mediation, with the differential
conductance and the Fano factor showing little noticeable
change due to phonons. The second derivative of the phonon-
mediated current exhibits peaks associated with single-phonon
absorption and emission similar to phonon signatures found
by inelastic electron energy spectroscopy [2] in other systems.
In the system studied, peaks associated with multi-phonon
emission are smeared. We conclude that the dominant effect
of the dynamic deformation of the particle island induced
by phonons is on the thermal properties of the island rather
than the electronic properties of the SET. Only the molecular
vibrations such as vibrons lead to the vivid signatures of the
vibrations of the island on the transport [1–8].
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Appendix A. Acoustic phonons in a particle

We illustrate acoustic phonon modes in the spherical particle
with an isotropic elastic continuum model [30, 31]. It is shown
that there are spheroidal and toroidal modes. Using the normal
modes, we formulate the quantized surface displacement ur ,
which appears in equation (6).

The elastic wave equation in the isotropic medium yields

ρü(r, t) = (λ+2μ)∇[∇ ·u(r, t)]−μ∇×[∇×u(r, t)], (A.1)

where ρ, λ and μ are the mass density and the Lamé
coefficients, respectively. We formulate the displacement
vector u(r, t), using a scalar and two vector potentials as

u(r, t) = ∇φ1 + ∇ × Φ2 + ∇ × ∇ × Φ3. (A.2)

The first term on the right-hand side of equation (A.2)
represents the longitudinal acoustic wave component and
the other two terms those of the perpendicularly polarized
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transverse waves. According to the spherical shape, we express
the vector potentials in the spherical coordinates as

Φα = (r, 0, 0)φα, (A.3)

for α = 2 and 3. Putting equation (A.3) into (A.2), we have
the following scalar wave equation for each potential function
φα: (

∇2 − 1

c2
α

∂2

∂ t2

)
φα = 0, (A.4)

where cα is the sound velocity given by

c2
α = [(λ + μ)δα,1 + μ]/ρ. (A.5)

The potential functions φαs are given, in spherical coordinates,
by

φα(r, t) =
∞∑

l=0

l∑

m=−l

Al,m
α jl(kαr)P |m|

l (cos θ)e−imφe−iωt ,

(A.6)
where jl is the spherical Bessel function of lth order and the
wavenumbers kαs satisfy the following dispersion relations:

ω = k1c1 = k2c2 = k3c3. (A.7)

P |m|
l is the associated Legendre polynomials and m is an

integer within the region −l � m � l. Al,m
α s are the

coefficients of the potential functions, which are determined
below.

Applying the stress-free condition on the particle surface,
we obtain two types of phonon modes in the particle;
spheroidal and toroidal [30, 31]. The former is composed
of φ1 and Φ3, having the radial component of displacement,
while the latter owing to Φ2 does not have the component.
The eigenvalue equation for the spheroidal modes becomes for
given (l, m)

2 jl+1(ξ)
ξ

η2

{
1 + (l − 1)(l + 2)

η

[
jl+1(η)

jl(η)
− l + 1

η

]}

+ jl(ξ)

{
−1

2
+ (l − 1)(2l + 1)

η2

+ 1

η

[
1 − 2l(l − 1)(l + 2)

η2

]
jl+1(η)

jl(η)

}
= 0, (A.8)

where ξ = k1a and η = k3a, respectively. There is the relation
between ξ and η from equation (A.7) as

η = c1

c3
ξ, (A.9)

so that equation (A.8) becomes the equation with respect to
only ξ . Although equation (A.8) gives the spectra of spheroidal
modes for a couple of parameters (l, m), equation (A.8) is
actually independent of m, and then the spheroidal modes are
degenerate by 2l + 1. Hereafter we express an eigenvalue by
ξl,n(≡k1,l,na = ωS

l,n a/c1) for a given l, where n indicates the
nth solution of equation (A.8). Then, the spheroidal mode is
formulated as

uS
l,m,n(r, t) = Al,m,n

1 {∇[ jl(k1,l,nr)P |m|
l (cos θ)e−imφ ]

+ α(l, n)∇ × ∇ × [(r, 0, 0) jl(k3,l,nr)

× P |m|
l (cos θ)e−imφ]}e−iωS

l,n t , (A.10)

where the coefficients Al,m,n
1 and α(l) are determined from the

following normalization condition of the spheroidal mode:
∫

V
|uS

l,m,n(r, t)|2 dV = 1. (A.11)

The coefficients become

Al,m,n
1 =

[
K1(l, n)

k1,l,n
+ α2(l, n)l(l + 1)K3(l, n)

k3,l,n

]−1/2

× [2I (l, m)π]−1/2, (A.12)

I (l, m) = 2(l + |m|)!
(l − |m|)!(2l + 1)! , (A.13)

K1(l, n) =
∫ ξl,n

0

[
∂

∂ξ
jl(ξ)

]2

ξ 2 dξ + l(l + 1)

×
∫ ξl,n

0
j 2
l (ξ) dξ, (A.14)

K3(l, n) =
∫ ηl,n

0

[(
∂

∂ξ
+ 1

ξ

)
jl(ξ)

]2

ξ 2 dξ + l(l + 1)

×
∫ ηl,n

0
j 2
l (ξ) dξ, (A.15)

and

α(l, n) = 2(l − 1) jl(ξl,n) − 2ξl,n jl+1(ξl,n)

[η2
l,n − 2(l2 − 1)] jl(ηl,n) − 2ηl,n jl+1(ηl,n)

.

(A.16)
The toroidal modes are obtained in the same way as the

spheroidal modes.
Using annihilation aQ

l,m,n and creation operators aQ†
l,m,n of

phonons, we formulate the phonon field as

u(r) =
∑

Q=S,T

∞∑

l=0

l∑

m=−l

∞∑

n=1

(
h̄

2ρω
Q
l,n

)1/2

×
[
aQ

l,m,n uQ
l,m,n(r) + H.c.

]
(A.17)

in the Schrödinger picture, where Q specifies the spheroidal
(S) or toroidal modes (T). We note here that a set of quantum
numbers J represents (Q, l, m, n) in the Hamiltonian Hph of
phonons in the particle (equation (15)).

In this work, we pay special attention to breathing (B)
and oblong (O) modes, belonging to the spheroidal modes.
Putting l = 0 and m = 0, the spheroidal modes become
the breathing modes with amplitude of azimuthal symmetric,
showing breathing motion. The spheroidal modes for l =
2 and m = 0 exhibit oblong vibrations, whose vibration
spectra contain the lowest vibration frequency among all the
spheroidal modes.

The eigenvalue equation (A.8) for the spheroidal modes
reduce for the breathing mode to

4 j1(ξ)
ξ

η2
− j0(ξ) = 0. (A.18)

Solving numerically equations (A.8) and (A.18), we obtain the
eigenfrequencies. For gold, ξ and η are related by

η = 2.66ξ (A.19)
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Table A.1. Dimensionless wavenumbers ξ of breathing mode waves
in a gold particle.

l n = 1 2 3 4 5

0 · · · · · · 2.939 6.191 9.364
1 · · · 1.535 2.792 3.996 4.376
2 0.999 1.994 3.303 4.537 5.574

from the mass density ρ = 19.3 g cm−3 and sound velocities
c1 = 3.24×103 m s−1 and c3 = 1.22×103 m s−1. Substituting
equation (A.19) into (A.18), the eigenfrequencies {ξ0,n} are
numerically obtained from equation (A.18), which are shown
in table A.1.

The fundamental frequency ωB becomes, for a = 1 nm,

ωB = 2π × 1.52 × 1012 rad s−1 (A.20)

and higher frequencies ωn (n = 2, 3, . . .) are found, from
table A.1, to be approximately harmonics of ωB:

ωn ≈ nωB. (A.21)

However, ωn (n � 2) becomes comparable to or larger
than the Debye frequency. In the frequency region, the
elastic continuum model cannot describe the particle vibrations
correctly, so that the obtained phonon frequencies {ωn}(n � 2)

become unreliable for the particle size. Table A.1 also shows
the spectra of oblong vibrational modes, whose fundamental
eigenfrequency is the smallest among the all the spheroidal
modes. Although the harmonics being lower than the Debye
frequency are considered to be valid, we pay attention only to
the breathing and oblong modes of fundamental frequency ωB

and ωO in this work as representative modes.
The phonon field only due to the phonon mode of interest

at ωK(K = B, O) yields

uK (r) =
(

h̄

2ρωK

)1/2

uK (r)(bK + b†
K ). (A.22)

For the breathing mode, bB ≡ aS
0,0,1 and b†

B ≡ aS†
0,0,1. uB ≡

uS
0,0,1(r) has only the radial component, which becomes

[uS
0,0,1(a)]r = 0.435

a3/2
. (A.23)

For the oblong mode, bO ≡ aS
2,0,1 and b†

O ≡ aS†
2,0,1. uO ≡

uS
2,0,1(r) and the radial component varies as cos θ . The

amplitude yields

[uS
2,0,1(a)]r = 3.252

a3/2
, (A.24)

at θ = 0.
Using the result, the ratio κK of the surface displacement

to the radius for the breathing mode becomes

κB = 2.331 × 10−22 1

a2
, (A.25)

and that for the oblong mode

κO = 29.876 × 10−22 1

a2
. (A.26)

Using κK , the displacement in the radial component ur at the
surface, which appeared in equation (6), yields

ur = κK a(bK + b†
K ). (A.27)

Here equation (A.27) gives the surface amplitude at θ = 0 for
the oblong mode.

Appendix B

The following ratio between the two �s at low temperature is
simplified as follows:

�(1, 0|0, 1)

�(1, 1|0, 0)
≈ AK

F( eV
2 − εC + h̄ωK )

F( eV
2 − εC − h̄ωK )

≈ AK

C0 V
e − 1 + h̄ωK

εC

C0 V
e − 1 − h̄ωK

εC

, (B.1)

where

AK =
(

z1

z2

)2

. (B.2)

Putting equation (B.1) into equation (64), the right-hand side
yields

�(1, 1|0, 0)

�(1, 1|0, 0) + �(1, 0|0, 1)
= 1

1 + AK

C0 V
e −1+ h̄ωK

εC
C0 V

e −1− h̄ωK
εC

. (B.3)

In the bias region C0 V
e > 1 + h̄ωK

εC
, the magnitude varies from

0 to 1
1+AK

with increasing bias. The saturated magnitudes are
0.11 for the breathing mode and 0.13 for the oblong mode.
Here the coefficients AB and AO are

AB = 8.03 (B.4)

AO = 6.46. (B.5)

Since the phonon energy is small in comparison with εC :

h̄ωB

εC
= 0.03 (B.6)

h̄ωO

εC
= 0.01, (B.7)

Equation (B.3) rapidly saturates and becomes approximately
0.1 at V C0/e = 1.1 where the nonlinear dependence of Iph is
seen for the oblong mode in figure 4(b).
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[27] Pólya G and Szegö G 1951 Isoperimetric Inequalities in

Mathematical Physics: Annals of Mathematical Studies
(Princeton, NJ: Princeton University Press)

[28] Lindblad G 1976 Commun. Math. Phys. 48 119
[29] Elattari B and Gurvitz S A 2002 Phys. Lett. A 292 289
[30] Love A E H 1944 A Treatise on the Mathematical Theory of

Elasticity (New York: Dover) chapter 12
[31] Nakayama T and Nishiguchi N 1981 Phys. Rev. B 24 6421

12

http://dx.doi.org/10.1021/nl052316g
http://dx.doi.org/10.1103/PhysRevLett.80.4526
http://dx.doi.org/10.1103/PhysRevB.66.035333
http://dx.doi.org/10.1103/PhysRevB.65.035403
http://dx.doi.org/10.1088/0953-8984/15/12/201
http://dx.doi.org/10.1103/PhysRevLett.90.256801
http://dx.doi.org/10.1103/PhysRevB.69.245409
http://dx.doi.org/10.1103/PhysRevLett.92.166801
http://dx.doi.org/10.1209/epl/i2004-10351-x
http://dx.doi.org/10.1103/PhysRevB.77.035428
http://dx.doi.org/10.1103/PhysRevB.78.085407
http://dx.doi.org/10.1103/PhysRevLett.88.148301
http://dx.doi.org/10.1016/j.physrep.2003.12.005
http://dx.doi.org/10.1038/nature01773
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1088/1367-2630/8/6/105
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1016/S0375-9601(01)00802-7
http://dx.doi.org/10.1103/PhysRevB.24.6421

	1. Introduction
	2. Model
	3. Canonical transformation
	4. Master equation
	5. Numerical results
	5.1. Temperature in the particle
	5.2. Current, differential conductance and noise

	6. Summary and conclusion
	Acknowledgments
	Appendix A. Acoustic phonons in a particle
	Appendix B 
	References

